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Abstract

The enhanced attitude control system experiment is a
technology demonstration experiment on the NASA’s small
spacecraft technology initiative program’s Lewis spacecraft
to evaluate advanced attitude control strategies. The pur-
pose of the enhanced attitude control system experiment is
to evaluate the feasibility of designing and implementing ro-
bust multi-input/multi-output attitude control strategies for
enhanced pointing performance of spacecraft to improve the
quality of the measurements of the science instruments. Dif-
ferent control design strategies based on modern and robust
control theories are being considered for the enhanced at-
titude control system experiment. This paper describes the
experiment as well as the design and synthesis of a mixed
H2=H1 controller for attitude control. The control synthe-
sis uses a nonlinear programming technique to tune the con-
troller parameters and impose robustness and performance
constraints. Simulations are carried out to demonstrate the
feasibility of the proposed attitude control design strategy.

Introduction

The current practice in spacecraft attitude control de-
sign is based on a single-input/single-output (SISO) control
strategy, wherein elementary and low bandwidth controllers
are designed for each of the three-axes of the spacecraft
separately. Typically, SISO attitude controllers are designed
to be low bandwidth (gain stabilized) to avoid uncertain,
and possibly harmful, interactions with the flexible modes
of the spacecraft, such as those of solar arrays or antennas
[1–2]. However, these controllers have limited performance
because of their elementary structure and low bandwidth.
Moreover, they are fairly hard to modify in their flight soft-
ware implementation form because they are typically coded
to follow a specific controller order and type. The enhanced
attitude control system (EACS) experiment is a technology
demonstration experiment on the NASA’s small spacecraft
technology initiative (SSTI) program’s Lewis spacecraft to
evaluate advanced attitude control strategies. The purpose
of the EACS experiment is to evaluate the feasibility of
designing and implementing robust multi-input/multi-output
(MIMO) attitude control strategies for enhanced pointing
performance of spacecraft to improve the quality of the
measurements of the science instruments. This experiment
is limited to controller designs for attitude control in the
normal science mode which involves fine attitude pointing.

The MIMO control designs would utilize robust and modern
control theories to synthesize attitude control designs which
can take better advantage of the control system hardware
to provide higher authority controllers, i.e., phase or gain
stabilized. Moreover, once an algorithm is incorporated on
the spacecraft to implement a MIMO attitude control system
(ACS) design, it would be very easy to replace controllers.
The specific objectives of the experiment are as follows:

1. To develop a MIMO ACS algorithm and flight software,
and implement this software within the SSTI/Lewis
flight on-board computer software

2. To develop MIMO attitude control designs, based on
robust and modern control theory

3. To conduct attitude control experiments by implement-
ing the MIMO control designs (instead of the baseline
normal mode controller) in the normal pointing mode

4. To evaluate the performance of MIMO attitude control
designs by analyzing the telemetry data

An efficient algorithm, both in time and memory re-
quirements, for the implementation of MIMO controllers has
been developed. With this algorithm, the required memory
and the number of floating point operations are linear func-
tions of the number of states in the MIMO controller. The
implementation software has been developed and incorpo-
rated within the on-board flight computer software. The
enhanced attitude control system is implemented as an in-
dependent module within the ACS software. It should be
noted that the various MIMO control designs are imple-
mented by simply uploading the controller data sets into
the MIMO routine, which also indicates the ease of replac-
ing the controller with a new MIMO control design. Several
synthesis techniques are being considered for the design of
MIMO controllers for the EACS experiment. These include,
H2–based,H1–based,�–based designs, as well as others.
One of the techniques considered is a mixedH2=H1 con-
trol synthesis approach, which is described in this paper.
In this control synthesis approach, a nonlinear programming
technique is used to tune the controller parameters of an
H2–based controller while imposingH1–based robustness
constraints, as well as, additional performance constraints.
The MIMO controllers are applied to a model of the Lewis
spacecraft, and simulations are carried out to demonstrate the
feasibility of the proposed attitude control design strategy.
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Spacecraft Modeling

For the purpose of dynamics and control design and
analysis, the task of modeling a spacecraft can be divided
into the modeling of the spacecraft structure itself, and the
modeling of the actuator components, sensor components,
and the controller, all of which comprise the attitude control
system.

Spacecraft structure modeling

Typically, the spacecraft structure can be modeled as
a linear, time-invariant flexible system, which in turn can
be represented by the following second-order dynamical
equations:

M �x+D _x +Kx = Bu+Hv (1)

together with some set of measurement and performance
output equations:

yd = Cmdx; yv = Cmv _x

ypd = Cpdx; ypv = Cpv _x
(2)

whereM is the positive definite mass matrix;D is the posi-
tive semidefinite damping matrix;K is the positive semidef-
inite stiffness matrix;B is the input influence matrix;H is
the disturbance input influence matrix;Cmd and Cmv are
the attitude and attitude rate measurement output influence
matrices, respectively;Cpd andCpv are attitude and attitude
rate performance output influence matrices, respectively;x

is a k x 1 vector of displacements;u is a m x 1 vector of
inputs to the system;v is a e x 1 vector of disturbances
to the system;yd and yv are the attitude and attitude rate
measurement output vectors, respectively; andypd andypv
are the attitude and attitude rate performance output vectors,
respectively. Usually, a finite element analysis is used to
obtain these matrices. In most cases, the number of dis-
placements, k, is quite large and thus impractical to work
with for general design and analysis purposes. To make
the problem more tractable, the displacements vectorx is
transformed into modal coordinates using the transformation
x = �r, with r being a n x 1 vector of modal amplitudes
and n << k. Here, only n significant modes are retained.
The transformation matrix� contains n columns which are
the eigenvectors associated with the n modes of interest of
the flexible system. The equations for the system, in trans-
formed coordinates, are:

Mr�r +Dr _r +Krr = �TBu +�THv

yd = Cmd�r; yv = Cmv�_r

ypd = Cpd�r; ypv = Cpv�_r

(3)

If normal modes are used, and their mode shapes
have been normalized with respect to the mass

matrix, and modal damping is assumed, then
Mr = Inxn, Kr = diag

�
!2
1
; !2

2
; :::; !2n

�
and

Dr = diag(2�1!1; 2�2!2; :::; 2�n!n), with wi and �i
being the open-loop natural frequency and damping ratio
values, respectively, for the ith mode.

By defining a new vectorxs = [rT _rT ]
T , the second-

order equations in eq. (3) can be rewritten into first-order
form as:

_xs = Asxs + Bsu+Bdv

As =

�
0 Inxn

�Kr �Dr

�
;

Bs =

�
0

�TB

�
; Bd =

�
0

�TH

� (4)

The measurement and performance output equations can
then be written as:

y =

2
4yd
yv

3
5 = Cxs

yp =

2
4ypd
ypv

3
5 = Cpxs

C =

2
4Cmd� 0

0 Cmv�

3
5;

Cp =

2
4Cpd� 0

0 Cpv�

3
5;

(5)

Here,xs is the plant state vector;As is the plant state matrix;
Bs is the control input influence matrix;C andCp denote
the measurement output and performance output influence
matrices, respectively.

Attitude Control System Modeling

In addition to modeling the spacecraft structure, or
plant, the various components of the attitude control sys-
tem (ACS) should be included to complete the spacecraft
model. These components are the sensors, actuators and
computer/data acquisition systems required to control the
spacecraft. By including these components, significant real
world effects such as actuator and sensor dynamics, noise,
digital quantization and sampling time delays, can be ac-
counted for in the overall analysis model. A typical ACS,
depicted in block diagram form with the plant in the loop,
is shown in Figure 1.
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Figure 1. Typical ACS model components.

This block diagram represents a typical ACS simulation
model for a spacecraft. The ACS consists of reaction wheels
to provide the attitude maneuvering and control torques, with
rate gyros and a star tracker, as sensors for measuring the
spacecraft attitudes and attitude rates. The Kalman filter
is used to estimate the vehicle’s attitude from the sensor
data, and the control law uses these estimated values, to-
gether with the attitude rate measurements from the gyros,
to compute the appropriate torque commands. The reaction
wheel dynamics may include nonlinear effects, like friction
and stiction, limits on the input command voltages and dig-
ital voltage quantization, as well as the quantization effects
on wheel RPM outputs due to the wheel’s optical encoder.
Each rate gyro senses the spacecraft attitude rates in one axis,
and is modeled as a second-order system. Rate gyro units
may be combined to comprise multi-axis gyro packages. To
each gyro dynamic model output channel, random signals
are added, which represent random drift walk and instru-
ment noise. The modeling of the star tracker may include
noise and alignment errors. Digital computer effects are
modeled by performing the control law and Kalman filter-
ing computations in discrete form, and using the appropriate
sampling times for each.

The equations governing the dynamics of the ACS com-
ponents are generally nonlinear, however, for the purpose of
MIMO control designs a linear model which includes a lin-
earized model of the wheel speed controller dynamics, a
2nd-order Pade approximation of a unit time delay of 1.024
sec (wheel speed controller time cycle), and a rational ap-
proximation of a zero-order hold at 1.024 sec, is used to
represents the control system dynamics. These dynamics
can be written in the form

_xh = Ahxh +Bhu

u = Chxh +Dhu
(6)

where xh is a vector of states for the ACS components;
Ah; Bh; Ch; andDh are the corresponding system matri-
ces; andu is the vector of commanded control inputs. These
equations can then be combined with the spacecraft dynam-
ics equations in eqs. 4 and 5 to form the complete set of
spacecraft system equations.

Control Synthesis

As mentioned earlier, several synthesis techniques are
being considered in the EACS experiment for the design of

MIMO controllers. These include,H2–based,H1–based,
�–based, and other controllers. One technique considered is
a mixedH2=H1 approach, implemented through design op-
timization, which is described in this paper. In this approach,
the controller is synthesized followingH2 methods while ro-
bustness constraints, to guarantee robustness against model
uncertainties in the plant, input, and output, are imposed
throughH1–type constraints. TheH2 design follows the
LQG/LTR (Loop Transfer Recovery) methodology to pro-
vide stabilizing controllers for the enhanced attitude control
experiment. Loop shaping filters are implemented within the
LQG/LTR framework to provide the ability to manipulate
the loop gains. The design parameters include the charac-
teristics of the process and measurement noise as well as the
variables associated with the shaping filters. At the top level
of this synthesis technique, nonlinear programming is used
to optimize the design parameters to provide optimal point-
ing performance for the Lewis spacecraft while imposing
H1–type robustness constraints, loop shaping constraints,
as well as other design constraints. The details of the syn-
thesis procedure is provided in the following sections.

LQG/LTR

In the LQG/LTR synthesis, the plant is assumed to have
the form

_x = Ax+ Bu+ �w

y = Cx+ v
(7)

wherex represents the augmented plant state vector defined
as x =

�
xTs ; x

T
h

�T
, which is obtained by combining the

spacecraft plant dynamics, given by eqs. (4) and (5), with
the control system hardware dynamics, given by eq. (6),
in series. The matricesA, B, andC are the augmented
spacecraft state, input influence, and output influence matri-
ces, respectively. The vectorsw andv are the process and
measurement noise vectors, respectively, and are modeled as
zero-mean and uncorrelated white noises with covariances

E
�
wwT

	
= W � 0 ; E

�
vvT

	
= V > 0 (8)

The optimal LQG controller is given by [3]

_̂x = (A �Kf � BKc)x̂+Kf y

u = �Kcx̂
(9)

with
Kc = �R

�1BTPc ; Kf = PfC
TV �1 (10)

where Pf and Pc are positive semidefinite matrices that
satisfy the following algebraic Riccati equations.

ATPc + PcA� PcBR
�1BTPc + CTQC = 0

PfA
T +APf � PfC

TV �1CPf + �TW� = 0
(11)
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If the triples
�
A; B; Q1=2C

�
and

�
A; �W 1=2; C

�
are sta-

bilizable and detectable, positive semidefinite solutions to
the Riccati equations in eq. (11) exist and the resulting con-
troller is stabilizing, i.e., the closed-loop system is stable [3].
Loop transfer recovery is a way of designing the LQG con-
troller such that the desirable robustness and performance
characteristics of the full state feedback are recovered at the
plant input or output. For a square plant, a two step proce-
dure is followed to achieve LTR at the plant output [3].

1. Design a Kalman filter by choosing appropriate covari-
ance matricesW andV until the return ratio of the filter
�C(sI � A)

�1
Kf is satisfactory for the plant output.

2. Design an optimal regulator by settingQ = I and
R = �I, and choose a� small enough such that the
return ratio of the compensated plant at the output re-
sembles the return ratio of the filter�C(sI � A)

�1
Kf

with reasonable accuracy over a desired range of fre-
quencies.

It should be noted that in LQG/LTR the noise covariance ma-
trices are taken as design parameters in order to shape the
loop gain of the system, and they do not necessarily have
any association with process or measurement noise charac-
teristics. In practical applications, the degree of freedom
provided by the element of the covariance matrices may
not be sufficient to obtain a desired loop gain in particular
ranges of frequency. In order to provide additional capa-
bility to adjust the loop gain, the spectral distribution of
the process and measurement noises may be manipulated
in desired frequency regions by augmenting the plant dy-
namics with additional noise dynamics. For the purpose of
MIMO ACS designs for the Lewis spacecraft, the spectral
distribution of both the process and measurement noises are
manipulated. The spectral distribution of the process noise
is manipulated to provide integral action in the loop gain
which is critical for acceptable pointing performance. This
is achieved by introducing the following dynamics

_� = Aw� + Bw �w

w = Cw�
(12)

with Aw = �0:0001�, Bw = I3�3, andCw = I3�3. Here,
�w is a white noise with intensityW , and� is a 3x3 diagonal
matrix, with positive elements that can be adjusted by the
design process.

In order to ensure proper roll-off of the loop gain at the
higher frequency ranges, to avoid destabilizing spill-over
problems or high frequency noise pollution, the spectral
distribution of the measurement noise is manipulated by
introducing additional dynamics as follows.

_� = Av� +Bv�v

v = Cv� +Dv�v
(13)

with Av = �0:5�, Bv = I3�3, Cv = �12:5��, and
Dv = 25�. Here,�v is a white noise with intensityV , and�

and� are 3x3 diagonal matrices, with positive elements that
can be adjusted by the design process to shape the roll-off.

The overall system dynamics may be written by com-
bining eqs. (7), (12), and (13), to obtain

_�x = �A�x+ �Bu+ �� 

y = �C�x+ ��v
(14)

where

�A =

2
4A �Cw 0
0 Aw 0
0 0 Av

3
5;

�B =

2
4B0
0

3
5 ; �� =

2
4 0 0
Bw 0
0 Bv

3
5;

�C = [C 0 CCv ] ; � = CDv

(15)

and

 �

�
�w
�v

�
(16)

with

E
�
  T

�
= 	 =

�
W 0
0 V

�
(17)

Now, the LQG/LTR based attitude control design is synthe-
sized by using variables�A; �B; �C; ��; 	; and�V �T , from
eqs. (15) to (17), asA; B; C; �; W; andV , respectively, in
eqs. (9) to (11), withQ = I, and� = 10�8. Note that the
design freedom is contained in the elements of the covari-
ance matricesW andV , as well as the diagonal elements of
matrices�; �; and�, i.e., a new controller is synthesized for
every combination of these parameters. As mentioned ear-
lier, design optimization is used to choose these parameters
so as to optimize the pointing performance of the spacecraft
while satisfying robustness and performance constraints.

Robustness

The LQG/LTR controller can provide excellent per-
formance if the model of the system is accurately known.
However, this controller may have serious stability and per-
formance issues if there is considerable uncertainty in the
model. In typical spacecraft design, the issue of model
uncertainty for the SISO controller is treated in the clas-
sical sense by imposing stability margins, such as gain and
phase margins. In this paper, robust stability for the MIMO
ACS controllers is addressed through the application of ro-
bust stability theory for various forms of uncertainty in the
system model. Specifically, four types of uncertainties are
considered, and they are (a) input multiplicative to accom-
modate uncertainties in the input of the plant, such as the
reaction wheels; (b) output multiplicative to accommodate
uncertainties in the output of the plant, such as the attitude
measurement system; (c) additive to accommodate unmod-
elled high frequency spacecraft dynamics; and (d) paramet-
ric uncertainties to accommodate uncertainties in the modal
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frequencies of some of the flexible modes that are included
in the design model. The conditions for robust stability of
the system under these type of uncertainties is discussed in
the following.

Uncertainties in the input

The uncertainties in the actuation system, such as those
of the reaction wheel assembly or the controller, as well as
general uncertainties in the spacecraft plant model, may be
modeled as input multiplicative uncertainty,�i, shown in
Figure 2.

Σ

K

 P

∆ i

Figure 2. System with Input Multiplicative Uncertainty.

which is equivalent to

∆

H

i

i
Figure 3. Equivalent System with Input Multiplicative Un-
certainty.

whereHi = (I +KP )
�1
KP , with P representing the plant

(system in eq. (7) andK denoting the controller (system in
eqs. (9) to (11)). The condition for robust stability of the
feedback system shown in Figure 3 is established from the
small gain theorem [3], which states that the closed-loop
system is stable iff

k�i(jw)k1 <
1

kHi(jw)k1
(18)

From eq. (18), if it is required to allow an input multiplica-
tive uncertainty�i(jw) such thatk�i(jw)k1 � �i, the
condition for robust stability can then be written as

kHi(jw)k1 <
1

�i
(19)

Uncertainties in the Output

The uncertainties in the attitude measurement system,
such as those in the rate gyros, star trackers, etc., as well
as general uncertainties in the spacecraft plant model, may
be modeled as output multiplicative uncertainty,�o, shown
in Figure 4.

Σ

K

 P

∆o

Figure 4. System with Output Multiplicative Uncertainty.

which is equivalent to

∆o

Ho

Figure 5. Equivalent System with Output Multiplicative
Uncertainty.

whereHo = (I + PK)
�1
PK. The condition for robust

stability of the feedback system shown in Figure 5 is estab-
lished from the small gain theorem [3], which states that the
closed-loop system is stable iff

k�o(jw)k1 <
1

kHo(jw)k1
(20)

From eq. (20), if it is required to allow an output multi-
plicative uncertainty�o(jw) such thatk�o(jw)k1 � �o,
the condition for robust stability can then be written as

kHo(jw)k1 <
1

�o
(21)
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Unmodeled Dynamics

As mentioned earlier, the spacecraft structural model
may include hundreds or thousands of flexible modes. How-
ever, realistically only a few significant low frequency
modes are included in the control design model, i.e., the
higher frequency modes are neglected. Moreover, the de-
gree of uncertainty in the knowledge of the frequency and
other modal attributes of the flexible modes increase as fre-
quency increases. One option could be to neglect the higher
frequency modes, but this could cause performance degra-
dation and even instabilities in the form of spill over. The
approach taken here is to model the neglected flexible dy-
namics along with associated uncertainties as additive plant
uncertainty,�

a
, as shown in Figure 6.

Σ

K

 P

∆a

Figure 6. System with Additive Uncertainty.

which is equivalent to

∆a

Ha

Figure 7. Equivalent System with Additive Uncertainty.

whereH
a
= (I +KP )

�1
K. Let�

a
(jw) be a stable, ratio-

nal transfer function. Then, the condition for robust stability
of the feedback system shown in Figure 7 is established from
the small gain theorem [3], which states that the closed-loop
system is stable iff

k�a(jw)k
1
<

1

kHa(jw)k1
(22)

Let the unmodeled dynamics along with associated uncer-
tainties be such that the additive uncertainty�

a
(jw) is

bounded as follows

��(�a(jw)) � j�a(jw)j ; 8! (23)

where�a(jw) is a scalar, rational, and stable transfer func-
tion. The condition for robust stability can then be rewritten
as

k�a(jw)Ha(jw)k1 < 1 (24)

Uncertainty in modal frequencies

For the purpose of control design, only the first three
flexible modes are included in the design model. This is
chiefly due to the sampling rate of the control system, which
limits the control authority over the flexible modes consider-
ably. Nevertheless, because of uncertainties that may exist
in the knowledge of the frequencies of these three modes
(parametric uncertainties), it is desirable to design a MIMO
ACS controller which provides robust stability in the pres-
ence of such uncertainties, i.e., the closed-loop system can
tolerate a certain degree of uncertainty in these frequencies.
In this paper, robust stability for uncertainties in the fre-
quency of the first two flexible modes, which are most likely
to have interactions with the ACS, is considered. Note that
uncertainties in the mode shapes or modal damping ratios
are not considered because they are not deemed as critical.
The parametric uncertainties ,�m (see eq. (26), are mod-
eled in a feedback configuration with an augmented plant as
shown in Figure 8.

K

 P

∆
m

’

Figure 8. System with Parametric Uncertainty

HereP
0

represents an augmented plant with additional in-
puts and outputs to accommodate the two model frequency
uncertainties (see eq. (27)). The configuration in figure 8
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is equivalent to

∆m

Hm

Figure 9. Equivalent System with Parametric Uncertainty

where
Hm = Ĉ(sI � Acl)

�1
B̂ (25)

and

�m =

�
�m1 0
0 �m2

�
; �mi 2 C (26)

HereHm represents the closed-loop transfer function around
the parametric uncertainty.Acl denotes the closed-loop state
matrix; and

B̂ =

2
666666666664

0 0
...

...
0 0
1 0
0 1
... 0
...

...
0 0

3
777777777775

; Ĉ =

�
0 . . . 0 �!2

1
0 . . . . . . 0

0 . . . 0 0 �!2
2

0 . . . 0

�

(27)
Note that the non-zero elements in̂B and Ĉ correspond to
the state variables associated with the modal velocities and
displacements of the first two flexible modes, respectively.
The condition for robust stability of the feedback system
shown in Figures 8 or 9 is given by Doyle [4], and may be
stated as follows. The feedback system shown in Figure 9
is stable for�m; k�mk1 < �m, iff

�(Hm(jw)) <
1

�m
; 8!

(28)

or
kHm(jw)k

�
<

1

�m
(29)

Since� can not be directly computed, i.e., it is typically
obtained by bounding it from above and below over a range
of frequencies, direct implementation of the robustness con-
dition given in eqs. (28) or (29) is costly and impractical

in an optimization setting. Therefore, the condition in eqs.
(28) or (29) is replaced by

kHm(jw)k
1
<

1

�m
(30)

Although, this condition is an upper bound for�(Hm), and
consequently may be more conservative than the previous
one, it is computationally more tractable. Furthermore,
since the modes are spatially independent (corresponding
to two different principal axes of the spacecraft), and the
plant and the controller tend to be diagonally dominant in
this frequency range, it is expected that the condition in eq.
(30) would not be too conservative. However, in actuality
no matter what condition for robust stability is used (eqs.
(28), (29), (30)), since the control authority over these two
modes is fairly limited, the condition for robust stability
tends to be conservative, i.e.,�m � 2�i. In other words,
the maximum complex parameter uncertainty allowed would
be approximately limited to 2 times the damping ratio of
the flexible modes. Note that this limitation is due to the
complex nature of uncertainty allowed and is not necessarily
an indication of the real parameter uncertainty that can be
tolerated by the system. This may be overcome by modeling
uncertainties in real parametric form and using mixed�
analysis, but, as mentioned earlier, the computation of�

is costly, making its use in the nonlinear programming
optimization prohibitive. Keeping in mind that the control
authority is limited around the flexible modes, such that the
controller would be rolling off before the first flexible mode,
a more useful criteria for robust stability under parametric
uncertainty may be established. Assume that it is desired to
allow for 25% uncertainty in the first two flexible modes.
Note that because of the limited control authority one need
not be concerned with positive variations in these modes, but
rather in variations that bring the frequency of these modes
closer to the bandwidth of the controller. To do this, instead
of the robust stability ofHm(jw), robust stability of two
perturbed models of the system is considered. Denote these
perturbed models byH1

m(jw) ad H2

m(jw), with H1

m(jw)
andH2

m(jw) corresponding toHm(jw) with the frequencies
of the first two flexible modes decreased by 10% and 25%,
each. Robust stability is then implied by requiring

H1

m(jw)

1

<
1

�1mH2

m(jw)

1

<
1

�2m

(31)

These conditions are intuitively expected to provide robust
stability since the control authority is low around these
modes, i.e., the controller is rolling off.
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Controller Design via Optimization

As mentioned previously, the parameters of the con-
trollers are designed via nonlinear programming techniques.
In this approach, the parameters of the LQG/LTR synthesis
approach are chosen to optimize the pointing performance of
the system while satisfying a set ofH

1
–type robust stabil-

ity constraints along with other constraints to impose perfor-
mance specifications or cost limitations. This optimization-
based approach provides a systematic means of designing
optimal MIMO controllers for the attitude control of the
Lewis spacecraft. Although, a mixedH2=H1 synthesis is
pursued here, other synthesis techniques may be easily im-
plemented as well. Furthermore, other performance and cost
specifications may be readily implemented also. The design
optimization problem is formulated as follows.

Using any linear, time invariant MIMO controller, the
closed-loop system dynamics can be written as

_�x = �A�x+ �Lp; yp = �Cp�x; u = �Cu�x (32)

where �x is the state vector for the closed-loop dynamics,
p(t) is a zero mean, white noise disturbance applied at the
disturbance locations,yp is the line-of-sight pointing error,
u(t) is the control vector, and�A, �L, �Cp and �Cu are the
corresponding closed-loop system matrices. The steady state
covariance matrix for the closed loop state,��x, is computed
by solving the following Lyapunov equation [5]

�A��x +��x
�AT + �L�p

�LT = 0 (33)

where�p is the covariance matrix for the disturbance noise,
p(t). The steady-state average control power is given as

P = lim
t!1

TrfEfu(t)uT (t)gg = Tr[ �Cu��x
�CT
u ] (34)

and the root-mean-square line-of-sight pointing error is

R = lim
t!1

�
Tr(Efyp(t)y

T
p (t)g)

� 1
2 =

�
Tr( �Cp��x

�CT
p )

� 1

2

(35)

The control design optimization problem is posed as:

min P�
�V ; �W;�;�; �

	 (36)

s.t.
kHi(jw)k1 <

1

�i

kHo(jw)k
1
<

1

�o
k�a(jw)Ha(jw)k1 < 1
H1

m(jw)

1
<

1

�1mH2
m(jw)


1

<
1

�2m
R(1; 1) � eroll

R(2; 2) � epitch

R(3; 3) � eyaw

�i

�
�C
�
j!orbI � �A

�
�1 �B

�
� �orb ; i=1;2;3

(37)

Here, The first five constraints areH1–norm robust sta-
bility constraints. In the next three constraints,eroll ; epitch;
and eyaw represent the desired upper bound values for the
spacecraft pointing error in roll, pitch, and yaw, respectively.
The last three constraints are on the singular values of the
closed-loop transfer function at orbital frequency to impose
disturbance rejection requirements for environmental distur-
bances. The variables!orb and�orb denote the orbital fre-
quency and upper bound value for the gain, respectively.
This optimization-based synthesis technique is used in the
next section to design MIMO ACS for the Lewis spacecraft.

Numerical Examples

The optimization-based mixedH2=H1 synthesis tech-
nique described in the previous sections has been used to
design MIMO ACS controllers for the Lewis spacecraft.
A number of controllers were designed for various perfor-
mance and cost specifications. In this section, the design
and simulation of one of these controllers are discussed. As
mentioned previously, the design variables available for op-
timization are contained in the elements of the covariance
matricesW andV , as well as the diagonal elements of ma-
trices�; �; and �. The process noise covariance matrixW
is expressed in terms of its Cholesky decomposition, i.e.,

W = LwL
T
w (38)

where the matrixLw is a 3 x 3 lower triangular matrix.
In this control design, the six nonzero elements ofLw are
used as design variables. The measurement noise covariance
matrix V is assumed to be diagonal, and its three diagonal
elements are used as design variables. The nine design vari-
ables associated with the covariance matricesW and V ,
together with the nine design variables associated with the
diagonal elements of matrices�; �; and�, constitute the 18
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design variables used in the design optimization. The de-
sign optimization was performed using the Automated De-
sign Synthesis (ADS) program. Gradient computations were
performed using finite difference approximations. An in-
terior penalty function method of ADS was used to solve
the nonlinear programming problems. In this method, the
constrained optimization problem is transformed into an un-
constrained problem through creation of a pseudo-objective
function, which is the sum of the original objective function
and an imposed penalty function (a function of the con-
straints [6]).

The parameters associated with the optimization con-
straints for stability robustness, pointing accuracy, loop
shaping, etc., are described in the following:

1. The scalar parameter�i was chosen at 0.5 to provide
input uncertainty levels comparable to the baseline de-
sign.

2. The scalar parameter�o was chosen at 0.5 to provide
output uncertainty levels comparable to the baseline
design.

3. The scalar transfer function�a(jw), which bounds the
unmodeled dynamics of the plant as well as any of its
potential perturbations or uncertainty, was chosen as

�a(jw) =
�!2 + 2j! + 1

�!2 + 100j! + 2500
(39)

This proper transfer function would bound the unmod-
eled dynamics of the spacecraft plant.

4. The scalar parameters�1m and�2m were chosen at 0.005
to ensure the feasibility of the constraints (for paramet-
ric uncertainty) within the design optimization.

5. The pointing accuracy threshold for roll,eroll was
chosen at 0.025 to provide three fold improvement over
the baseline design.

6. The pointing accuracy threshold for pitch,epitch was
chosen at 0.025 to provide three fold improvement over
the baseline design.

7. The pointing accuracy threshold for yaw,eyaw chosen
at 0.035 to provide comparable pointing performance
to the baseline design.

8. The required attenuation at the orbital frequency,�orb
was chosen at 15 dB to provide improved orbital dis-
turbance rejection over the baseline design.

The design optimization resulted in a 44–order con-
troller which satisfied all design, performance and robust-
ness constraints. Two simulations were set up using the
MATLAB v4.2/SIMULINK v1.3c simulation package on a
SPARCsystem 600 Sun workstation, one for the designed
MIMO ACS controller and the other for the baseline SISO
ACS controller. The controller block in the simulation is
implemented using the MIMO subroutine, developed by
NASA Langley in C programming language, with the aid of

the SIMULINK user-defined S-function. Both simulations
used a 28-mode state space model of the Lewis spacecraft.
However, no hardware dynamics (e.g., rate gyros, reaction
wheels) were included in any of the simulations. Both sim-
ulations included full models (as they were available) of
reaction wheels, rate gyros, and the star tracker. A Kalman
filter was designed and used to estimate the vehicle’s at-
titude from the sensor data. The reaction wheel dynamics
included friction and stiction models, limits on the input
command voltages and digital voltage quantization, as well
as the quantization effects on wheel RPM outputs due to
the wheel’s optical encoder. To each gyro dynamic model
output channel, random signals were added, which repre-
sent random drift walk and instrument noise. The model-
ing of the star tracker included noise and alignment errors.
The spacecraft was subjected to environmental disturbances,
which included gravity gradient torques, drag torques, mag-
netic unloading, etc. Each simulation was run for one orbit,
with each orbit assumed to be 5996 seconds in duration.

Figures 10–12 show the spacecraft estimated attitude
time histories in roll, pitch and yaw for the two simulations.
These plots show the time histories from 500 seconds on-
wards to allow the start-up transient dynamics to die out.
Figures 10 and 11 clearly demonstrate the improvement in
attitude pointing in roll and pitch, where it is observed that
peak to peak attitude response is reduced by a factor of 5
or more. There is no discernible change in yaw pointing
as seen from figure 12. This is because the controller was
mainly designed to improve roll and pitch pointing, as they
effect science data considerably more. Figures 13–15 show
the complete time histories of the wheel speeds for reac-
tion wheels 1-3 for the two simulations. It is observed from
these figures that the wheel speeds for the baseline SISO and
MIMO controllers are fairly close to each other, particularly
in steady-state, indicating that there is little penalty (in terms
of power required) that is paid by the MIMO controller for
providing a better pointing performance. It is also noted
from these figures that the MIMO controller has higher fre-
quency content, which indicates the increased bandwidth of
the controller.

In conclusion, the optimal mixedH2=H1 controller
provided substantial improvements in the pointing perfor-
mance of the Lewis spacecraft over those provided by the
baseline controller. This improvement was achieved while
satisfying all robust stability conditions as well as other de-
sign or performance specifications. Furthermore, the power
required to achieve such an improvement in pointing perfor-
mance is minimal and well within the capacity of the reaction
wheels in normal pointing mode. It should be noted that the
proposed mixedH2=H1 approach follows the conventional
design approach in that it satisfies the various robust stability
conditions against input, output, parametric, and nonpara-
metric uncertainties, individually. However, if it desired to
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analyze controller robustness in a collective sense, a mixed
� analysis [4] may be performed.

Concluding Remarks

The enhanced attitude control system experiment,
which is a technology demonstration experiment on the
NASA’s small spacecraft technology initiative program’s
Lewis spacecraft to evaluate advanced attitude control strate-
gies, has been described. The purpose of the experiment
is to evaluate the feasibility of designing and implement-
ing robust MIMO attitude control strategies for enhanced
pointing performance of spacecraft to improve the quality
of the measurements of the science instruments. Among
the many control design strategies being considered for the
experiment, a control synthesis technique based on mixed a
H2=H1 approach has been presented. The control synthesis
uses a nonlinear programming technique to tune the con-
troller parameters and impose robustness and performance
constraints. Simulations were carried out to demonstrate the
feasibility of the proposed attitude control design strategy,
and have shown that the mixedH2=H1 attitude control
designs can provide substantial improvement in the pointing
performance of the spacecraft over the conventional SISO
designs, with minimal increase in required power, while
maintaining reasonable degree of robustness against model-
ing and hardware uncertainties. An efficient algorithm, both
in time and memory requirements, for the implementation
of MIMO controllers has been developed. The algorithm
has been incorporated within the on-board flight computer
software.
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Figure 10. Time histories of estimated roll attitude for Lewis
spacecraft
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Figure 11. Time histories of estimated pitch attitude for
Lewis spacecraft
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Figure 12. Time histories of estimated yaw attitude for
Lewis spacecraft
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Figure 13. Time histories of the wheel speed for reaction
wheel no. 1
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Figure 14. Time histories of the wheel speed for reaction
wheel no. 2
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Figure 15. Time histories of the wheel speed for reaction
wheel no. 3
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